
REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 1

CUDA Based Polyphase Filter
Mark McCurry

Abstract—This paper presents the evaluation of the use of a
graphics processor for realtime radio astronomy DSP (Digital
Signal Processing) within VLBI (Very Long Baseline Interfer-
ometry). A polyphase filter bank (pfb) was implemented in
a prototype application to convert external ADC input into
channelized frequency streams. This system was tested with a 32
channel pfb, 8 bit samples, and 8 taps/channel. With a prototype
system, 512 Mega-samples/second could be easily processed and
890 Mega-samples/second is possible. Instruction throughput is
the current limitation, so a modest increase in the graphics card’s
processing speed will permit the desired speed of 1024 Mega-
samples/second. This makes GPUs an interesting candidate for
a cost effective upgrade as both software and hardware systems
progress.

Index Terms—Polyphase Filter Bank, GPU, CUDA, CUFFT,
radio astronomy, VLBI

I. INTRODUCTION

W ITHIN the field of radio astronomy, upgrading existing
equipment to get performance and cost gains occurs

often. For VLBI (Very Long Baseline Interferometry), the
implementation of PFBs (Polyphase Filter Banks) has been
done on FPGA (Field Programmable Gate Arrays) boards
in order to meet the required data rates. As GPU (Graphics
Processor) hardware has become cheaper and faster with time,
it has started becoming an option for this signal processing.
This project is an investigation into the performance of a
GPU as a replacement for the DSP (Digital Signal Processing)
performed by the FPGA boards.

A. Background

Polyphase filters for radio astronomy have gone through
several iterations. Initial filters were implemented as analog
bandpass banks. Later they shifted over to the FPGA centric
RDBE (Roach Digital Back-End). Now with cheaper access to
GPU based processors, they may be the next evolutionary step.
As indicated by [1], the Nvidia GPUs can be a cost effective
general purpose computing hardware for this task.

1) General Terminology: In order to effectively read
through this report, some basic terms for signal processing
and the surrounding components should be known. The built
system is designed to work on a stream of samples, or
instantaneous values of the signal, to decompose its frequency
domain information. Each one of these samples is taken at a
regular rate called the sampling rate. This processing is done
on a set number of frequency channels, or ranges for frequency
information to be grouped in.

On both ends of this system work is done to transform
between fixed and floating point numbers. Floating point
numbers are like numbers that have a set number of significant

REU program, MIT Haystack, Westford, MA

digits and are scaled as needed with an exponent. Fixed point
numbers have a set range and no exponent for varying their
scale.

These fixed point samples are passed to the system with
UDP packets. After removing the packet header, a frame of
data is gathered. This can be grouped with other frames to
form a chunk of data, which is the basic processing unit of
the designed system.

2) FIR Filters: One of the major components needed for
the PFB is a polyphase FIR filter. Ignoring the polyphase
aspect, a FIR filter is a Finite Impulse Response filter, or
more simply, a means to change the frequency contents of
an input signal. Every sample output from this system is the
sum of scaled previous components. A typical way to write
this is in a difference equation, which describes the output
via previous samples. One of the most simple examples is the
running average filter. For a running average of three input
samples x, the output y at sample i is defined in Equation 1.
This has a frequency response shown in Figure 1

y[n] =
1
3
x[n] +

1
3
x[n− 1] +

1
3
x[n− 2] (1)

Fig. 1. 10 Point Running Average Filter Response

In the multirate case, some portions of the signal processing
runs at a different sampling rate than the rest of the system.
In the case of polyphase filters, all the samples get processed,
but with different paths. The specifics of the used filter are
discussed later.

B. Goals

This project was intended to demonstrate that existing hard-
ware could replicate and existing FPGA based DSP system.
This system was designed to have an input rate of 1024

REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 2

Analog RDBE NIC GPU Output

Fig. 2. System block diagram

Mega-samples/second or 1024MB/s when ignoring protocol
overhead. The intended PFB would perform 32 point FFTs and
it would use a 256pt prototype FIR filter. The output would
be a series of 4bit complex samples, with 2bits for each real
and imaginary component. The PFB is based upon a sample
MATLAB implementation discussed in the next section.

II. METHODS

A. Prototype

As a reference implementation, a series of Matlab scripts
were provided. These Matlab scripts are provided in the
appendix for comparison. These files were used to produce
the test filters, which the final implementation conforms to.

B. Equipment

The testing setup was composed of a desktop computer,
RDBE, signal generator, clock generator, and 1pps generator.
The desktop computer has one 64-bit core, an standard eth-
ernet NIC for RDBE setup, a 10GbE NIC for RDBE data
transfers, a Nvidia Tesla C2050, and stock components.

1) RDBE: The roach board for this project was a source
of external vdiff packets. The Roach board was designed by
CASPER1 and produced by DigiCom2.

Fig. 3. ROACH (Reconfigurable Open Architecture Computing Hardware)

2) NIC: The network interface used to interface with the
roach was an Intel 82598EB 10GbE card. This was placed in
a PCI-E x4 slot, limiting the overall data rate to an absolute
maximum of 800 MB/s unidirectional. As this is below the
desired 1 GB/s, full speed cannot be tested in the current setup.

3) Tesla GPU: A Nvidia Tesla graphics card was used.
This card is one of the high end scientific computing cards
offered by Nvidia. It offers a significant amount of cores,
memory, and speed when compared to other cards. Using this
card the computational prices for various operations could
be explored. If possible this card could be replaced with

1Center for Astronomy Signal Processing and Electronics Research casper.
berkeley.edu/group.php

2http://digicom.org/special-products/roach-board.html

Fig. 4. Nvidia Tesla Graphics Card

another to reduce costs. The specifications for this card are
summarized in Figure 9.

4) Supporting Hardware: Several other instrument were
used to support the roach board. A one pulse per second
generator was used to initialize the system. A clock generator
was used to set the sampling rate of the board. A function
generator was used to provide test signals to the system.

C. Code

The code for this experiment was a combination of network-
ing and CUDA (Compute Unified Device Architecture) code
written in C++. All code was built and tested under CUDA
4.0.

For the main loop of the program can be summarized in
Algorithm 1.

Algorithm 1 Main loop algorithm
SetupF ilter
while processing do
Synchronize(pfb.stream)
Save(Result) when Result
Receive(packets)
Process(packets, pfb)

end while

1) Filter Parameters:

sinc (t) ≡ sin (πt)
πt

(2)

buffer[i] = Fc sinc ([)Fc(i− taps/2)] (3)

Where taps is the total number of taps, Fc is the cut-
off frequency determined to be channels−1, and i ∈
{Z|0 < i ≤ taps}.

2) Convolution: For the PFB, convolution is performed on
the decimated filter and decimated samples. For interleaved
samples, N channels, and M taps per channel, the definition
of the output is:

y[i] =
M∑
i=0

x[i ∗N] ∗ coeff [i ∗N] (4)

In the past this operation was done using fixed point
arithmetic, which is possible with CUDA. Fixed point is not
used, as under current graphics cards (Compute Capability
2.0), fixed point operations take twice as long. On the next
compute capability, 2.1, fixed point operations will take three
times as long[2].

casper.berkeley.edu/group.php
casper.berkeley.edu/group.php
http://digicom.org/special-products/roach-board.html

REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 3

3) CUFFT: After the convolution, CUFFT3 is used to
perform the forward FFT on the samples. In order for the
library to perform the R2C transform, it requires extra padding,
as shown in Figure 5. This padding could be prevented in two

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X X

Fig. 5. Before/After Frame Packing

main ways. Samples could be interleaved in place to allow for
a C2C transform, later recovering the real portion of the data.
This option could yield subpar performance if special care is
not taken to perform sequential reads and writes[3].

It would also be possible to write a custom FFT (Fast
Fourier Transform) routine to perform the operations in place,
dropping the unwanted channels. This option has the issue that
a custom FFT is likely not as optimal as the existing one and
it would require extra development time.

4) Quantization: With this done, the samples are quantized
and optionally stripped of unused frequency channels. Within
VLBI, the conventional bits per complex sample are 4 bits as
shown in [4]. The quantization factor was found based upon
insuring the distribution documented in [4].

III. RESULTS

A. Filter Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (half−cycles/second)

N
or

m
al

iz
ed

 G
ai

n

Magnitude response of 256 tap FIR, 32 tap FFT based PFB

Fig. 6. Acheived Frequency spectrum of desired bands

In order to test the filter performance to verify all algorithms
within the GPU, a series of tests were run. For both floating
point and fixed point stages it was verified that all functioned
as expected. A tone centered in each channel resulted in 30x
or more signal in that channel than adjacent channels.

In order to further see the performance of the system, dumps
of the spectrum were made and verified to hold true with an

3CUDA FFT library[3]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (half−cycles/second)

N
or

m
al

iz
ed

 G
ai

n

Matlab Prototype PFB

Fig. 7. Prototype Frequency spectrum

external signal generator. The resulting spectrum generated by
spectrum-summary can be seen in Figure 6, which is iden-
tical to Figure 7 with the removal of DC. This and the test suite
can be found with the source at http://fundamental-code.com/
gitweb/?p=gpfb.git or by cloning a copy with: git clone
git://fundamental-code.com/gpfb.git

B. Real Time Performance

This system was tested at half the data rate, 512 Mega-
samples/s, as the full data rate was not supported by the data
source or the used NIC. At the time of writing, the desired full
data rate with the specified filter parameters and desired output
format was not accomplished. This desired format involved
stripping out unwanted channels that would not be used in the
correlator. With both of these constraints, the system is able
to run at half speed with a margin of error. When sacrificing
the output format, half speed operations run without problem
in realtime. The sacrified format would include all output
channels fo the system, include those that were aliased, ie.
the DC and highest frequency channel.

In order to test the system further, it was tested on a
GTX470, which is about 1

10x the cost of the used Tesla card.
As shown in Table I, this could be a much cheaper option for
lower bandwidth systems.

All tests were averaged over 1024 times and were done with
2 parallel executions of the pfb. This was done with 256 taps
on the protype filter and 32 channels in the system. The size
of a chunk was 64,000,000 samples. All tests that did not
involve the use of the RDBE packets tracked only the gpu
processing time with IO with respect to CPU/GPU memory.
One execution of the pfb is shown in Figure 8.

IV. FUTURE WORK

In order for this project further, several things need to be
addressed:
• Software cannot run at full speed

http://fundamental-code.com/gitweb/?p=gpfb.git
http://fundamental-code.com/gitweb/?p=gpfb.git

REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 4

TABLE I
PERFORMANCE OF GPU CODE4

Performance Metrics Data Input Rate
Reference Implementaiton 744 MB/s
No extra channels 540 MB/s
Hardcoding FIR size 756 MB/s
Hardcoded FIR, Hand Tuned Block Size 890 MB/s
Using 1/10 cost 470GTX 637 MB/s

Fig. 8. Display of One Iteration from Computeprof

• Hardware cannot run at full speed
• Software needs enhanced configuration support
• Software parameter space has not been fully explored

A. Full Speed SW

As mentioned in the results, the overall software perfor-
mance is 74% of the desired speed. It is suspected that
further gains can be made here, but the exact way to make
further gains is not clear, but likely related to CUDA specific
semantics. The data rates are near those cited in [1], indicating
that the implementation is not unreasonably slow.

B. Full Speed HW

There are currently two issues that prevent the hardware
from reaching the desired 1024 MB/s input data rate. The
first is the hardware configured for this REU does not support
the output rate. This will need to be modified by one of the
resident computer engineers. The second is that the 10Gb NIC
can not currently support the data rate. This can be fixed by
moving it to a x8 PCI slot, which is not available in the current
testing machine.

C. Configuration

At this time most of the parameters for the system are coded
directly into the .cpp/.h files. This means that the behavior of
the utilities are determined at compile time. Ideally the pro-
gram would be parameterized with an external configuration

file. One candidate for this is libconfig5. This offers a
simple file format that could hold all parameters.

D. Parameter Space Optimization

At this point, the prototype has not had the relationship
between filter taps, and channels related back to the overall
data rate. In the end, the overall goal is to optimize the
signal-to-noise ratio of the system, which will vary as the FIR
becomes longer or shorter. It is suspected that a reduction of
the filter taps to increase the sample rate will improve the
signal-to-noise ratio the most.

V. CONCLUSIONS

As a result of this examination, it appears that GPUs will be
an inportant option relative to the RDBE system in performing
DSP with radio astronomy. Although the deomonstrated data
rates near 900 Mega-samples per second indicate that it does
process data in the right order of magnitude for this system to
becomboe a vialble extention as GPUs continue to advance.

REFERENCES

[1] K. van der Veldt, “A polyphase filter for gpus and multi-core processors,”
Master’s thesis, Universiteit van Amsterdam, April 2011.

[2] Nvidia, NVIDIA CUDA C Programming Guide, 2011.
[3] Nvidia, CUDA CUFFT Library, 2011.
[4] W. Brisken, “Complex sampling considerations,” 8th US VLBI Meeting,

2010.
[5] Nvidia, CUDA C Best Practices Guide, 2011.

APPENDIX

This project is designed to provided an implementation of
a polyphase filter for use with vdiff packets and a software
correlator. Requirements:
• cmake
• CUFFT
• CUDA

From the current directory:

mkdir build
cd build
cmake ..
make
make test

Currently few of the utilities process command arguments or
configuration files. Module dependency is fairly minimal, so
changing this should require fairly minimal work.

A. Full Processing(pfb)

This program executes the full processing chain and dumps the
result to file for analysis. As this has not be used with tools
further in the signal processing chain, the output is a csv of
channels by time. This process occurs with full quantization.

5http://www.hyperrealm.com/libconfig/

http://www.hyperrealm.com/libconfig/

REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 5

B. Realtime Performance(rt-summary)

Summarizes the realtime performance of the GPU processing.
This summary does not account for any overhead that CPU
based vdiff packet work may involve, but this has tended to
be fairly minimal.

C. Filter Characteristics(spectrum-summary)

Produce the frequency response of all channels in the filter.
This is performed with floating point data. For basic informa-
tion on fixed point responses, see the fixed point filter test.

D. Packet Viewing(pkt-dump)

Viewing the packet output of the roach system can be an im-
portant stage of debugging. This program accepts the number
of packets as an argument.
As mentioned previously, the parameters of the system cur-
rently reside in the code, some more formally than others.
For the entire system, the characteristics of the pfb are set in
params.h

CHANNELS: The total number of channels or split FIR
sections for the PFB. This sets the output to be
(CHANNELS/2+1) frequency bins.

TAPS: The number of taps for the prototype FIR filter. It is
assumed that TAPS%CHANNELS = 0.

FS: For testing FS is used to describe frequency over
normalized frequency

For specific utilities:
MEM SIZE: Deprecated buffer length for testing, defined

in param.h used in frequency response tests and
spectrum summary

TEST LENGTH: Number of iterations to average the
performance over. Defined for realtime.cpp, only for
rt-summary.

Packets: This defines the number of packets to be read
in main.cpp. This is also defined separately in real-
time.cpp.

Addr: The current address of the source of vdiff packets.
Defined and used in rdbe.cpp.

Port: The current port of the source of the vdiff packets.
Defined and used in rdbe.cpp.

../FIRsimulation.m
c l o s e a l l ;

N = 5 0 ; %number o f f ram es
f s = 1024 ; %sample r a t e (MHz)
dec = 8 ; %d e c i m a t i o n f a c t o r
t a p s = dec∗8; %number o f t a p s
fo = 1 2 ; %t e s t t o n e f r e q u e n c y (MHz)

Nt = N∗ t a p s ; %t o t a l number o f ADC samples
t = 0 : 1 / f s : ((Nt−1)/ f s) ; %ADC t i m e sample a r r a y (us)
t d = t (1 : dec : Nt) ; %d e c i m a t e d t i m e sample a r r a y

chbw = f s / dec ;

s = cos (2∗ pi∗fo∗ t) ; %t e s t t o n e s i g n a l p l o t
%ch = 5;
%s = c h i r p (t , chbw∗(−1/2+ch) , t (end) , chbw∗(1/2+ ch)) ;

%remove t h e c l o c k o f f s e t so t h a t t h e i n p u t da ta sample s are t i m e a l i g n e d
%w i t h t h e FIR s t a g e o u t p u t sample s
% s = r e s h a p e (c i r c s h i f t (Inpu tData ’ , 2 0) ’ , 1 , numel (I n p u t D a t a)) ;

%c a l c u l a t e FIR c o e f f i c i e n t s and r e s h a p e them i n t o an
%’ dec ’ by ’ t a p / dec ’ d i m e n s i o n a r r a y f o r p o l y p h a s e p r o c e s s i n g
%t h i s i s t h e p o l y p h a s e d e c o m p o s i t i o n o f t h e p r o t o t y p e f i l t e r
f i r c = f i r 1 (t a p s −1,1/ dec) ;

%d i s p l a y f i l t e r r e s p o n s e
f i g u r e (2)
f r e q z (f i r c , 1)

f i r c = f i r c / max (f i r c) ;
c o f s = f l i p l r (reshape (f i r c , dec , t a p s / dec)) ;
f i g u r e (1 0 1)
p l o t (c o f s)
f i g u r e (4)
f r e q z (c o f s (: , 1) , 1)

%d e c i m a t e / f i l t e r i n p u t s i g n a l
s f = pfbconv (s , c o f s) ;

%t r a n s f o r m f i l t e r e d s i g n a l s t o t i m e domain
SF = f f t (s f , [] , 1) ;
f i g u r e (9 9)
p l o t (ro t90 (s f))

f i g u r e (1) ,
p l o t (t (1 : dec : end) , s f (1 , :))
mx = max (abs (SF (1)) , abs (SF (2))) ;
f i g u r e (3) ,
f o r n = 1 : (dec)

s u b p l o t (dec , 1 , n)
p l o t (r e a l (SF (n , :)))
a x i s ([− i n f i n f −20 2 0])

end

../pfbconv.m
f u n c t i o n s f = pfbconv (s , h)

%h : dec x (t a p / dec)
%s : 1 x Ns
Nc = s i z e (h , 2) ; %number o f c o e f f i c i e n t s per t a p
Np = s i z e (h , 1) ; %number o f t a p s
Ns = l e n g t h (s) ; %l e n g t h o f i n p u t samples

s f = z e r o s (Np , Ns / Np) ;

f o r m = 1 : l e n g t h (s) %’m’ i s t h e f u l l−r a t e (i . e . f a s t) t i m e i n d e x

%p o l y p h a s e f i l t e r bank i n d e x f o r t h e c u r r e n t f a s t−t i m e i n d e x
n = mod (m−1,Np) + 1 ;

%d e c i m a t e d t i m e sample i n d e x
k = f l o o r ((m−1)/Np) + 1 ;

%s i g n a l sample i n d i c i e s t o a p p l y t h e f i l t e r
%t h e r e are a lways ’ t a p s / dec ’ number o f i n d i c i e s
s i d x = (m−(Nc−1)∗Np) : Np :m;

%d i s c r i m i n a t e sample i n d i c i e s o u t s i d e t h e i n d e x bounds
%i n g e n e r a l ’ f i d x ’ w i l l be 1 : (t a p s / dec) u n l e s s f i l t e r i s
%t o be p l a c e d near t h e boundary sample s o f ’ s ’ .
f i d x = f i n d ((s i dx >0)&(s idx<=Ns)) ;
s i d x = s i d x (f i d x) ;

%c o n v o l v e t h e i n p u t sample s w i t h t h e f i l t e r c o e f f i c i e n t s
s f (n , k) = sum (s (s i d x) .∗ h (n , f l i p l r (f i d x))) ;

end
end

REU PROGRAM: MIT HAYSTACK 2011: POLYPHASE FILTER BANKS 6

/usr/local/cudasdk/C/bin/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Found 1 CUDA Capable device(s)

Device 0: "Tesla C2050 / C2070"
CUDA Driver Version / Runtime Version 4.0 / 4.0
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 2687 MBytes (2817982464 bytes)
(14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock Speed: 1.15 GHz
Memory Clock rate: 1500.00 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535),

3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048,

2D=(16384,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support enabled: Yes
Device is using TCC driver mode: No
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 3 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.0,
CUDA Runtime Version = 4.0, NumDevs = 1,
Device = Tesla C2050 / C2070

Fig. 9. Device Summary from Nvidia’s deviceQuery

../PFBfilterresponse.m
f s = 1024 ; %sample r a t e (MHz)
dec = 3 2 ; %d e c i m a t i o n f a c t o r
t a p s = 2 ˆ 8 ; %number o f t a p s

%t i m e a r r a y
t = 0 : (1 / f s) : ((1 / f s)∗(t a p s −1));

%Polyphase p r o t o t y p e f i l t e r
s = f i r 1 (t a p s −1,1/ dec) ;

%p l o t t h e p r o t o t y p e f i l t e r
f i g u r e (3) , p l o t (t , s)

%z e r o pad p r o t o t y p e f i l t e r up by f a c t o r o f 100 and c a l c s p e c t r u m
S = f f t s h i f t (f f t ((s) ,100∗ t a p s)) ;

%f r e q u e n c y a r r a y o f s p e c t r u m
f = ((− f l o o r (100∗ t a p s / 2) : (c e i l (100∗ t a p s /2)−1)) / (100∗ t a p s)) / (t (2)− t (1)) ;

%p l o t t h e s p e c t r u m
f i g u r e (1) , p l o t (f ,20∗ l og10 (abs (S)))

% a x i s ([−16 16 −0 1 . 1])

f i g u r e (2) , p l o t (f , ang le (S.∗ exp (1 i∗2∗pi∗f ∗ (1 2 7 . 5 / 1 0 2 4)))∗1 8 0 / pi) ;
a x i s ([−16 16 −180 1 8 0])

%w r i t e s p e c t r u m t o f i l e
% d l m w r i t e (’ PFB32response . t x t ’ , [f ’ r e a l (S) ’ imag (S) ’] , ’ newl ine ’ , ’ un ix ’) ;
Sps = S.∗ exp (1 i∗2∗pi∗f ∗ (1 2 7 . 5 / 1 0 2 4)) ;
Sps (ang le (Sps) ˜= 0) = abs (Sps (ang le (Sps) ˜= 0)) ;

S t = z e r o s (1 6 , l e n g t h (Sps)) ;
f o r n = 1 :16

S t (n , :) = c i r c s h i f t (Sps ’ , (n−1)∗ f l o o r (dec / (f (2)− f (1)))) ’ ;
end

St = S t / max (max (S t)) ; %n o r m a l i z e
f i g u r e (3) ,
p l o t (f / 5 1 2 , S t) ; a x i s ([0 1 0 1 . 0 1])
x l a b e l (’Frequency (half-cycles/second)’)
y l a b e l (’Normalized Gain’)
t i t l e (’Matlab Prototype PFB’)

%g r i d

f i g u r e (4) ,
p l o t (f , ang le (S t) ,’linewidth’ , 5) ; a x i s ([0 512 −10 1 0])
x l a b e l (’Frequency (MHz)’)
y l a b e l (’Phase (\theta)’)

%g r i d

	Introduction
	Background
	General Terminology
	FIR Filters

	Goals

	Methods
	Prototype
	Equipment
	RDBE
	NIC
	Tesla GPU
	Supporting Hardware

	Code
	Filter Parameters
	Convolution
	CUFFT
	Quantization

	Results
	Filter Performance
	Real Time Performance

	Future Work
	Full Speed SW
	Full Speed HW
	Configuration
	Parameter Space Optimization

	Conclusions
	References
	Appendix
	Full Processing(pfb)
	Realtime Performance(rt-summary)
	Filter Characteristics(spectrum-summary)
	Packet Viewing(pkt-dump)

